

Ground Water Route Work Sheet								
	Rating Factor		Assigner (Circle		Multi- plier	HRS	Max. Score	PRO
	Observed Release)	۵	45	1	0	45	O
	If observed releas				•			
2	Route Characteris Depth to Aquifer	** .	0 10	3	2	પ	6	4
	Concern Net Precipitation Permeability of t	he	0 1 2	3	1	Z. 1	3 3	2 3
	Unsaturated Zo Physical State	ne 	0 1 2	<u> </u>	1	3	3	3
			Total Route Chai	acteristics Score		10	15	12
3	Containment		0 0 2	3	. 1)	3	í
4	Waste Characteris Toxicity/Persiste Hazardous Wast Quantity	ence	0 <u>3</u> 6 0 ① 2	9 13 15 18 3 4 5 6 7	1 8 1	12	18 8	18
				·	,			
		-	Total Waste Cha	racteristics Score		13	26	19
5	Targets Ground Water U Distance to Neal Well/Population Served	rest	0 1 2 0 4 6 12 16 18 24 30 32	(5) 8 :0 25) 40	3 1	9 30	9 40	9 35
•						20	10	44
(2)			Total Targ	/ . W. PER MINE TO	· · · · · · · · · · · · · · · · · · ·	39	49	7 /
ē		multiply rultiply		x 5		5070	57.330	10,032
7	Divide line 6 b	y 57,330	and multiply by 1	00	Sgw =	8.84		17.50

Surface Water Route Work Sheet								
	Rating Factor		-	ed Value le One)	Mülti- plier	HRS	Max. Score	PRO
1	Observed Release)	<u>(a)</u>	45	1	0	45	0
	If observed releas			· _	4 . 2.	V 1 88 - Amel 10 00 00 - 1 - 1 - 1 - 1 - 1 - 1		
2	Route Characteris Facility Slope an		ig 👰 1 a	2 3	1	٥	3	0
	1-yr. 24-hr. Raint Distance to Near Water		\$ d	3	1 2	20	3 6	2 2
	Physical State		0 1 2		1	_3	3	3
		To	tal Poute Ch	aracteristics Sco	re	5	15	7
3	Containment		o 🙆 2	3	1	1	3	•
4	Waste Characteris Toxicity/Persiste Hazardous Waste Quantity	ence	0 1	9 12 15 18 2 3 4 5 6 7	1 8 1	12	18 8	18
		To	ital Waste Ch	naracteristics Sco	re	13	26	19
5	Targets Surface Water U Distance to a Se Environment Population Serve	insitive		3 2 3 6 8 10 18 20	.3 2 1	60	9 6 40	600
	to Water Intake Downstream		} 12 16 24 30	32 35 40	~			<i>(</i>
			Total Ta	rgets Score		6	55	6
_	7727	multiply 1 nultiply 2		5] x 5		390	64,350	798
7	Divide line 6 b	y 64,350 and	i multiply by	100	S _{sw} =	0.6	1	1.24

		Air Route Work Sheet				1-10-
	Rating Factor	Assigned Value (Circle One)	Multi- plier	HRS	Max. Score	
1	Observed Release	O 45	1	0	45	0
	Date and Location			-		
- April - Apri	Sampling Protoco		·			
	If line 1 is 0, to	he Sa = 0. Enter on line 5 then proceed to line 2				
2	Waste Characteris Reactivity and	tics 0 1 2 3				
	Incompatibility	-	1		3	
	Toxicity Hazardous Waste Quantity	0 1 2 3 4 5 6 7 8	3 1		9 8	
		Total Waste Characteristics Score			20	
	Targets Population Within					
	4-Mile Radius	21 24 27 30	1		30	
*	Distance to Sensit	ive 0 1 2 3	2		6	
	Land Use	0 1 2 3	1		3	
	•					
		Total Targets Score		* 80°***********************************	39	
] M	luitiply 1 x 2	× 3		:	35, 100	
D	ivide line 4 by	35.100 and multiply by 100 S	a = (0.00		o.00

HRS	s	5.2
Groundwater Route Score (Sgw)	3.84	78.15
Surface Water Route Score (Saw)	D.61	0.37
Air Route Score (Sa)	0.00	0.00
$s_{qw}^2 + s_{sw}^2 + s_a^2$		78.52
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		3.86
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 = s_M =$		5.12

WORKSHEET FOR COMPUTING SM

PRO	S	52
Groundwater Route Score (Sgw)	17.50	306.25
Surface Water Route Score (Saw)	1,24	1.54
Air Route Score (Sa)	0.00	0.00
$s_{gw}^2 + s_{sw}^2 + s_{s}^2$		307, 79
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2}$		17.54
$\sqrt{s_{gw}^2 + s_{sw}^2 + s_a^2} / 1.73 - s_M -$		10:14

WORKSHEET FOR COMPUTING SM